AP NEWS
Press release content from Business Wire. The AP news staff was not involved in its creation.
PRESS RELEASE: Paid content from Business Wire
Press release content from Business Wire. The AP news staff was not involved in its creation.

AppTek Announces PyTorch Backend for RETURNN

March 19, 2019

MCLEAN, Va.--(BUSINESS WIRE)--Mar 19, 2019--AppTek, a leader in Artificial Intelligence, Machine Learning, Automatic Speech Recognition and Machine Translation, today announced that as of this week, AppTek’s Neural Network environment RETURNN  supports  PyTorch  for efficient model training. This adds to the company’s already existing support for the open source framework  Theano, which was spearheaded and supported by Yoshua Bengio and his MILA team until September 2017, and the open source framework  Tensorflow, where the maintenance, support and further improvement is led and shepherded by the Google Brain team. PyTorch is an open source ML framework that is led and supported by Facebook and is seeing a fast and wide adoption by AI researchers and engineers, allowing for rapid experimentation and easy system development and deployment.

AppTek’s integration with PyTorch had a special focus on human language technology, and speech recognition in particular. The performance of the models trained on the PyTorch framework is similar or better compared to the already excellent performance of models trained with the other frameworks. The combination of RETURNN and PyTorch allows high scalability, utilizing high degrees of parallelization to either process high amounts of data simultaneously, or increase the throughput.

“We are excited to see the power of RETURNN unfold using the PyTorch back-end, we believe that RETURNN will bring benefits to scientists who do rapid product development. The need to up the rate of innovation is critical to serve practical use cases and enable the research community. We see that combining the rate of innovation in modeling on RETURNN and the rate of innovation on the core machine learning libraries of PyTorch can deliver that,” states Mudar Yaghi, CEO of AppTek.

Hermann Ney, Director of Science at AppTek and Computer Science Chair for Human Language Technology and Pattern Recognition at RWTH Aachen adds: “We are looking forward to identify ways to collaborate and push the limits even further. It proved in the past that bringing together different disciplines divulges state of the art in research. We had Machine Learning, Signal Processing, Speech Recognition, Machine Translation, Handwriting Recognition and the new initiative in speech synthesis scientists work together to build RETURNN to enable the building of best-in-class systems.”

AppTek’s leading scientist who led this effort, Patrick Doetsch, said: “We are happy to announce that we successfully integrated PyTorch as a third back-end into our acoustic model training software RETURNN. Just as with our Tensorflow and Theano back-end, the PyTorch version allows users to train state-of-the-art acoustic LSTM models using PyTorch modules.”

About AppTek

AppTek artificial intelligence and machine learning-based automatic speech recognition and machine translation platform is deployed for the media and entertainment industry as well as call centers. Leveraging over 30 years’ worth of experience its scientists and research engineers support the research and development of practical systems – AppTek enables the highest quality automatic speech recognition and machine translation solutions available anywhere for enterprises everywhere. The streaming real-time combination allows for live closed captioning and speech to speech translation as in the AppTek closed captioning appliance available to TV stations and the Talk2me® app available on the AppStore. AppTek’s ASR and Neural MT are also available via its cloud API services.

For more information, please visit  http://www.apptek.com/technology/.

View source version on businesswire.com:https://www.businesswire.com/news/home/20190319005678/en/

CONTACT: Joyson Cherian

W2 Communications

703-877-8104

apptek@w2comm.com

KEYWORD: UNITED STATES NORTH AMERICA DISTRICT OF COLUMBIA VIRGINIA

INDUSTRY KEYWORD: EDUCATION TECHNOLOGY CONSUMER ELECTRONICS ELECTRONIC DESIGN AUTOMATION HARDWARE SOFTWARE AUDIO/VIDEO NANOTECHNOLOGY OTHER TECHNOLOGY MANUFACTURING ENGINEERING TRAINING

SOURCE: AppTek

Copyright Business Wire 2019.

PUB: 03/19/2019 11:55 AM/DISC: 03/19/2019 11:55 AM

http://www.businesswire.com/news/home/20190319005678/en